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EXECUTIVE SUMMARY

Parking is a limited resource and in high demand in urban cities. The common mismatch be-

tweensupplyanddemandofparking leads toadverseconsequencessuchas longcruising times

as drivers search for spaces near their final destinations. Pricing is a viable method of balanc-

ing the supply and demand of parking. This report analyzes three pricing policies in the City of

Toronto which include hourly pricing, progressive hourly pricing, and time-of-day pricing.

The methods employed in this study include data analysis, econometric modelling, opti-

mization, and simulation. This study first analyzes data provided from Green-P and the City

of Toronto to develop and asses parking pricing strategies. The data is used in an econometric

model to replicate parking behavior, mainly the parking duration of the drivers given a specific

pricing structure. The econometric model is then used as input in an optimization model that

derives the optimal design of the pricing structures. This optimal policy design then serves as

the the basis for which scenarios are developed in the VISSIMmicro-simulation software.

Results fromthecase study simulationdeveloped inVISSIMshowthat aprogressivehourly

pricingpolicy inhigh-occupancyparking locations (greater than60%)canreduceaveragepark-

ing occupancy. On average, implementing a progressive pricing policy in these locations re-

duced parking occupancy by 5.53%while implementing the same policy for low-occupancy lo-

cations only reduced parking occupancy by 1.03%. Additionally, results show that progressive

hourly pricing reduces the number of vehicles that were rejected to park in their initial de-

sired spaces due to their full occupancy. During peak conditions the percent share of vehicles

declined parking decreased by 13.62% while in off-peak conditions it was reduced by 6.68%.

Lastly with regards to time-of-day pricing, a reduction of 50% in the price level of the hourly

policy does not negatively influence parking occupancy.

This report finds that the prospects of implementing a progressive hourly pricing policy for

on-street parking locationswithin the downtown area are beneficial, especially for parking lo-

cations that experience a high parking occupancy. It is recommended that the econometric

model isused foroptimizationofpricing levels forparking locationswithhighoccupancywithin

the study area. By optimizing pricing for the on-street parking locations, reduction of network

travel times, parking occupancy, and percent of vehicles that are unable to find parking can be

achieved.
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1 INTRODUCTION

Parking is a limited resource and in high demand in urban cities. The common mismatch be-

tween supply and demand of parking often causes drivers to cruise in search of convenient

spaces near their final destinations. Studies conducted from 1927 to 2001 in various cities

including San Francisco, Sydney, London and New York show that on average 30% of traffic

is cruising for parking and the average search time is 8.1 minutes [Shoup, 2006]. Cities seek

to alleviate the such adverse consequences by implementing parking policies such as pricing,

time-of-day restrictions, and payment systems. The objective of this report is to evaluate the

efficacy of different curbside pricing schemes in Toronto.

The case study is chosen as the city of Toronto’s CurbsideManagement Strategy as shown

in Figure 1. Three pricing policies are consideredwhich include: 1- Hourly pricing, 2- Progres-

sive hourly pricing, 3- Time-of-day pricing. Hourly pricing is a common pricing strategy that

charges drivers a fixed rate per hour of parking. Progressive pricing charges drivers an initial

hourly rate for thebeginninghoursofparkingwhich increases if theparkingdurationsurpasses

a given threshold. Time-of-day pricing charges drivers at a high hourly rate during peak (high

demand) hours and a lower hourly rate during off-peak (low demand) hours.

An example of the three pricing strategies is depicted in Figure 2. In the left panel, which

represents hourly pricing, drivers pay $4 per hour of parking. In the middle panel, which rep-

resents progressive pricing, drivers pay $4 per hour if they park less than 4 hours, however,

this rate increases to $8 per hour if they park for longer than 4 hours. In the right panel, which

represents time-of-day pricing, drivers pay $8 per hour during the peak hours and $4 per hour

during the off-peak hours.

FIGURE 1: CASE STUDY BOUNDARIES. THE THREE HIGHLIGHTED STREETS AMONGST

THEMANY THATHAVEON-STREET PARKING SPACES.

The framework of this study is presented in Figure 3 comprised of four steps: data analy-
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sis, econometric modelling, optimization, and micro simulation. This study first analyzes data

provided fromGreen-Pand theCity of Toronto todevelopandassesparkingpricing strategies.

Thedata is first used in aneconometricmodel to replicateparkingbehavior,mainly theparking

durationof thedrivers givena specificpricing structure. Theeconometricmodel is use as input

in an optimizationmodel that derives the optimal design of the pricing structures. As an exam-

ple, in the progressive pricing strategy the optimizationmodel finds the shape of the step-wise

pricing structure as shown in Figure 2b. The outcomes of the optimization models, i.e., opti-

mal pricing structures, are implemented in a micro-simulation model developed in VISSIM to

assess policy impacts and cross-compare them against each other.

FIGURE 2: THREE PRICING STRATEGIES.

Themain insights of this reports are the following:

• Progressive hourly pricing reduces total network travel time and increase the average

travel speeds under peak and off-peak conditions. During peak conditions the total net-

work travel time decreased by 1.14% while in off-peak conditions travel time was re-

duced by 1.35%.

• Progressive hourly pricing in high-occupancy parking locations (greater than 60%) can

reduceparkingoccupancy. Onaverage, implementingaprogressivepricingpolicy in these

locations reduced parking occupancy by 5.53% while implementing the same policy for

low-occupancy locations only reduced parking occupancy by 1.03%.

• Progressive hourly pricing reduces the number of vehicles that were rejected to park in

their initial desired spaces due to their full occupancy. During peak conditions the per-

cent shareof vehiclesdeclinedparkingdecreasedby13.62%while inoff-peakconditions

it was reduced by 6.68%.

• Thenumber of vehicleswhodonot findparkingwhenarriving at a location exponentially

increaseswithparkingoccupancy (i.e, thepercentageofoccupied spaces). Whenparking

occupancy isabout70%roughly30%ofvehiclesareunable tofindparkingwhile forpark-

ing a occupancy of about 80% roughly 45% of vehicles do not find parking. This means

that a10% increase in parking occupancy raises thepercent share of rejected vehicles by

15%.
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• For time-of-day pricing a reduction of 50% in the price level of the hourly policy does

not negatively influence parking occupancy. As shown in Section 7.2, both the parking

occupancy and number of vehicles who do not find parking remain constant under the

full hourly price and 50% of hourly price scenarios.

The remainder of this study is organized as follows. An extensive review of relevant lit-

erature on parking strategies is presented in Section 2. Analysis of available parking and ve-

hicle volume data is discussed in Section 3. Formulation of pricing policy equations using the

marginal utilitiesofdrivers is presented inSection4. Acomparisonofoptimalpricingpolicies is

conducted for two objective functions, revenue and social welfare, in Section 5. VISSIMmodel

development for a case study with 54 parking locations in the City of Toronto is shown in Sec-

tion 6 and a summary of highlights and findings is outlined in Section 7. Finally, concluding

remarks are presented in Section 8.

FIGURE 3: FRAMEWORK.

2 RELATEDWORKS

Although the focus on this study is on the threediscussedpricingmechanism, a reviewof other

prominentparkingpricing strategies is providedaswell in this section. Wesummarize thepric-

ing strategies as:

1. Fixed rate pricing: Charge a fixed rate per day,

2. Hourly pricing: Charge per hour,

3. Progressive pricing: Charge per hour and increase the rate if the parking time is beyond

a threshold,

4. Time-of-day pricing: Chargemore for peak hours and less for off-peak hours,

5. Dynamic pricing: Charge and adapt according to real-time parking availability,

6. Parking permits: Allow permit holding vehicles to park for free at the cost of the permit.

6



August 25, 2021

2.1 FIXEDRATE PRICING

In fixed rate pricing, drivers pay a given fee for a set number of hours in the day. This pric-

ing strategy is common for privately owned parking garages that serve daily commuters. The

main benefits for the drivers is in their parking duration; those that park for longer durations

benefit from economies-of-scale of paying less per hour overall. In contrast, this system is in-

convenient for short parking durations (e.g., leisure trips) as drivers are forced to pay a large

fee for hours extended beyond the required parking usage.

2.2 HOURLY PRICING

In hourly pricing drivers pay per hour of parking. In contrast to fixed rate pricing, hourly pric-

ing is more convenient for leisure trips where the parking durations are short. The City of

Toronto heavily implements hourly pricing in its downtown core. Drivers can pay for parking

using Green-P, which is a parking lot management organization owned by the City of Toronto.

Payments can be made either through parking meters, deployed on side-walks for every few

parking spots, or via the online app available on smart-phones. This report uses Green-P data

provided by the City of Toronto to better understand parking behavior in the downtown core.

Figure 4 presents the histogram of the hourly parking prices in the case study. The prices are

set at $3, $4, and $5 per hour. It is evident that majority of parking spaces have a charge of $5

per hour and aminority have charge of $3 per hour.

FIGURE 4: HISTOGRAM OF HOURLY PARKING RATES FOR 54 PARKING LOCATIONS IN

THE STUDYAREA.

2.3 PROGRESSIVE PRICING

Parking is limited insupplyandhigh indemand. Asdiscussedearlier, pricing isawell-established

method of balancing supply and demand not just in parking management but also other appli-

cations subjected to such supply and demand imbalance. An example of such applications is in
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consumptionofwater in countieswerewater is a limited resource. In theMetropolitanRegion

of Sao Paulo Brazil, watermanagement authorities control water demand by charging less per

litre for low consummations andmore per litre if consumption surpasses a predefined thresh-

old [Ruijs et al., 2008]. Similarly, the government of South Korean implemented a progressive

pricing policy for the use of household electricity which aimed to achieve a more fair pricing

systems which allowed lower income households with less consumption to pay a lower rate.

This was achievable since electricity use increases proportionally with income [Youn and Jin,

2016].

Fromaparkingperspective, aprogressivepricingpolicyallowspricing tobemoreefficiently

tailored towardsmultiple user groups. It also has the power to prohibit long parking durations

when drivers are required to pay more per hour if they park for longer durations. Lowering

parking durations through progressive pricing can increase parking availability and reduce the

number of vehicles searching for parking spaces. Ultimately, traffic congestion can be allevi-

ated if fewer vehicles search for parking.

2.4 TIME-OF-DAYPRICING

Increasing parking prices is often followed with public outcry. In parking pricing, a prominent

strategy is to chargemore only during the peak-hourswhen demand is high. By chargingmore

during busy hours, the number of vehicles whowant to park decreases allowing the city to de-

crease average parking occupancy. Time-of -day pricing is not only a pricing scheme that is al-

ready in use for on-street parking in Toronto, but also a popular pricingmethod in other indus-

tries such as in the household electricity industry. In Ontario, the electricity service provider

Hydro One implements a time-of-day (also known as time-of-use) pricing scheme where the

pricing rate takes on 3 price levels based on time of consumption. This pricing scheme bet-

ter reflects the cost of producing electricity at different time of day based on demand. Since

production of electricity at a given time is capped at a limit, instead of attempting to produce

more electricity the pricing scheme shifts the demand from peak times to off-peak times by

incentivising consumers with a lower price. In a similar manner, when the number of parking

spaces that can be provided is limited due to space constraints, implementing a time-of-day

policywill incentivize someof the demand to park in the off-peak periods as opposed to during

peak hours.

2.5 DYNAMIC PRICING

Dynamic pricing requires adjustments in the pricing structure via real-time monitoring of the

parking occupancy status. When occupancy is high (or vacancy is low), a large dynamic price

is applied to reduce occupancy (increase vacancy). This allows cities to keep a certain number

of spaces available at all times, reduce the possibility of cruising for parking, and improve total
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networktravel time. Dynamicpricing isalso implemented inotherapplicationsuchasrideshar-

ing. Service providers such as Uber and Lyft has a surge pricing mechanism in which ridership

fares are increased if demand is high or supply is low, such as in adverse weather conditions

like rain and snow [Nourinejad and Ramezani, 2020].

SFpark, a pilot project in San Francisco, used parking occupancy data gathered from sen-

sors to adjust hourly parking rates [Fabusuyi and Hampshire, 2018]. Rates were adjusted not

more than one time per month by 0.25 to 0.50 dollars to achieve a desired parking occupancy

of 85 percent. Such an approach not only requires parking occupancy sensors, which can be

expensive to implement, but also a trial-and-error approach so as to achieve optimal price con-

vergence. Instead of varying the price and then observing driver’s parking behavior, this paper

will predict driver behavior under varying parking price levels.

2.6 PARKINGPERMITS

As the City of Toronto implements stricter parking enforcement in the city’s downtown core,

commercial vehicles (CVs) have become targets of increased ticketing and towing, often with-

out alternate legal means of parking and loading. CV parking permits are a solution to provide

lawful and affordable parking options that maintain a source of revenue for themunicipality.

Parking permits around the world are reviewed on the basis of their cost and scope. Stud-

ies of historical parking citations in Toronto indicates clear patterns of parking behavior for

which a permit would be beneficial. The trade-off between permit revenue and parking ticket

revenue shows that optimal permit pricing, in the order of Can $300 annually, can provide an

improvement inmunicipal revenue and achievewidespread adoption [Rosenfield et al., 2016].

An improvement in social welfare is also achievedwith permit adoption through the reduction

of the cost of congestion, as permit holders are encouraged to park in legal zones away from

congested arterials [Rosenfield et al., 2016].

3 DATA

Data used for this case study was provided by Toronto Parking Authority and City of Toronto.

The first set of data which was provided by the Toronto Parking Authority consisted of on-

streetparking lot information. Thisdataset isdescribed inSection3.1. Secondly,CityofToronto

provided trafficcountsdataat signalized intersectionsand turningmovements for23 intersec-

tions. This data is further described in Section 3.2.

3.1 ON-STREET PARKING

Data for 54 parking lot locations within the study area was provided by Toronto Parking Au-

thority, commonly known as Green-P. The data includes aggregate information about daily
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FIGURE 5: DAILY TRANSACTIONS FOR 3 PAYMENT MACHINES IN DOWNTOWN

TORONTO. THESE LOCATIONSAREHIGHLIGHTED IN FIGURE 1.

transactions at eachpaymentmachine including thegenerated revenue, total numberof trans-

actions, number of transactions with a parking dwell time longer than three hours, etc. The

payment locations (each operated by one paymentmachine) display distinct parking behavior.

Currently, there are only 3 pricing rates for the study area which are 3, 4, and 5 dollars per

hour. There are 10 location that charge 3 dollars per hour, 20 locations that charge 4 dollars

per hour and 24 locations that charge 5 dollars per hour.

A given number of parking spots are associated with each parking location (i.e, payment

machine). The total number of parking spots per location ranged from 3 to 82 parking spots

with an average of 18 parking spots per location. Additionally, the data included the average

parking occupancy for the year of 2019. Parking occupancy was specified using three ranges

labelled as low,mediumandhigh. Theparkingoccupancypercentage range for each labelwere

0% to 50%, 51% to 79%, and 80% to 100% respectively.

The daily aggregate transaction data for themonth of September 2019was analyzed. Fig-

ure 5 shows the number of daily transactions for 3 parking locations in the study area. From

these three locations two locations, shown in Figure 5 (b) and (c), experience a relatively stable

number of transactions throughout themonth. Contrary to this, the parking location spanning

from University Ave. from Dundas St. W. to Queen St. W. seen in Figure 5 (c) experiences a

significant drop in number of transaction during weekends.

The mean dwell time (parking duration) for each parking location was inferred from the

daily transaction data. The expected dwell time for each day was derived by dividing daily

revenue by the number of daily transactions and parking price. From the analysis reported in

Figure 6, it is seen that the average dwell time for each parking location is relatively constant

throughout themonth of September. That is to say that the average parking duration for each

day for the month of September 2019 is approximately constant and is not influenced by the

day of themonth. As a result the the average parking duration for a specified parking location

can be calculated by averaging the observations for thewholemonth of September. The dwell

time analysis displayed a dwell time distribution resembling a normal distribution as shown in

Figure 7. From the graphs, it can be noted that the mean dwell time of drivers remains rela-

tively constant throughout the month of September. The mean and standard deviations from
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FIGURE 6: EXPECTED DWELL TIME OF 3 PAYMENT MACHINES IN DOWNTOWN

TORONTO.

FIGURE 7: DWELL TIME DISTRIBUTION OF 3 PAYMENT MACHINES IN DOWNTOWN

TORONTO.

the dwell time distributions are later used in calibration of the econometric models explained

in the next section. Themean and standard deviation were calculated for each of the 54 park-

ing locations of the study area.

3.2 VEHICLEVOLUMES

Vehicle turningmovementcountswereprovidedandused in theVissimmicro-simulationmodel

explain in Section 6. The 23 intersections provided by City of Toronto are shown in Figure 8.

The nature of the data consisted of averaged volume counts for themonth of September 2019

at an hourly level. The data set contained attributes defined by day type (weekend,weekday),

vehicle type, hour of day, intersection leg, movement type (left, right, through), and hourly av-

erage volume. The data set was analyzed and findings indicate that peak hour conditions oc-

curs from 8 A.M. to 9 A.M. for the morning and from 5 P.M. to 6 P.M. in the afternoon. The

morning time frame is used as the designated peak hour times for the study. For this study,

two vehicle classes are taken into consideration as described in Section 4. The truck vehicle

volume counts for each of the peak hour time frames under questionwere calculated in a simi-

larmanner. Thepercent shareof truck typevehicles in thenetworkwasestimatedby summing

up all turningmovements for the peak hour scenario (car and truck type vehicles) and calculat-

ing the percent share of truck vehicles from this total. The resulting truck percent share in the
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network that resulted from this analysis and is used for all subsequent calculationswas 3.32%.

FIGURE 8: INTERSECTIONS WITH AVAILABLE TURNING MOVEMENT COUNT DATA

WITHIN THE STUDYAREA.

4 ECONOMETRICMODEL

Consider an urban area with a total parking demand of T vehicles per hour. A ratio α of the

demand represents high-value driver, and the remaining 1 − α represents low-value drivers.

Let Th = Tα and Tl = T (1 − α) be the demand of high- and low-value drivers, respectively,

where “h” and “l” are memonics for the two groups. Drivers benefit from each (fraction of)

hour of parking as this time is used to engage in activities occurring the urban area. Let ui(d)

be a group idriver’s benefit from the dth hour of parking. ui(d) is regarded as themarginal utility

of parking, which satisfies ∂ui(d)/∂d < 0 representing the Law of diminishing returns, indicat-

ing for example that the first hour of parking for shopping purposes provides a higher level of

satisfaction than the second hour. We further assume the marginal utility function is convex

and satisfies ∂2ui(d)/∂d
2 > 0 for both groups. The Green-P data from the previous section is

used to calibrate twomarginal utility functions of high and low value drivers.

We define two pricing policies: hourly pricing and progressive pricing. In the former the price

is fixedand imposed indollars perhour, and in the latter thepriceof parking increases for those

whose parking duration is larger than a threshold. We do not explicitly develop an off-peak

pricingmodel because it is a special case of hourly pricingwith the difference of having a lower

demand during the off-peak. Thus, the samemodel developed for hourly pricing can have two

variants: one for peak and the other for off-peak hours.
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FIGURE 9:MARGINALUTILITY.

4.1 HOURLY PRICING:

In hourly pricing, the drivers pay p per hour. LetUi(d) be the utility of group i driverswith park-

ing duration d. The utility is the benefit from engaging in activities (the integral of marginal

utility from zero to d) minus the price of parking, given as

Ui(d) =

∫ d

0

ui(w)wd− pd. (1)

We note that the parking cruising cost (i.e., themonetary value of the time spent searching

for parking) is not included in the total utility because (1) accounts for the utility gained from

themoment a driver finds parking. We later consider the cost of the cruisingwhenmaximizing

social welfare to develop policies that alleviate excessive cruising and its adverse impacts on

traffic, emissions, andwelfare.

Drivers maximize their utility by choosing an optimal parking duration denoted by d∗i for

group i. From the first order condition, setting the derivative of (1) to zero gives

d∗i = u−1
i (p), (2)

whereu−1
i (.) is the inverseof themarginal utility function. Given theconvexityofui(d)w.r.t.

d, there exists a single and unique d∗i for each group’s drivers.

4.2 PROGRESSIVE PRICING:

In progressive pricing, the drivers pay p1 per hour if their parking duration is less than q. For

those whose parking duration is larger than q, the price is p1 for the first q hours and p2 for the

remainder (from q to d). By definition of progressive pricing policies, we have p2 ≥ p1 as this

policy is designed to truncate parking dwell times. The utility of group i drivers in progressive

pricing is

Ui(d) =

∫ d

0

ui(w)dw − C(d), (3)
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FIGURE 10: THREE POSSIBLE RELATIONSHIPS BETWEEN DWELL TIME AND THE PRO-

GRESSIVE PRICING POLICY.

where

C(d) =

p1d d ≤ q

p1q + p2(d− q) d > q

is the cost of parking for drivers.

Similar to hourly pricing, the drivers maximize their utility by choosing an optimal parking

duration denoted by d∗i for group i. From the first order condition, setting the derivative of (3)

to zero gives

d∗i =


u−1
i (p1) ui(q) ≤ p1

q p1 < ui(q) ≤ p2

u−1
i (p2) p2 < ui(q).

(4)

We note that the hourly pricing policy is a spacial case of progressive pricing if we set q = 0

and p1 = p2 = p. Thus, it is straightforward that the latter outperforms the former regardless

of thepolicy’s objective. Hereafter,we focus on theprogressivepricing policy and consider the

special case of hourly pricing wherever needed.

5 OPTIMIZATION

5.1 REVENUEMAXIMIZATION

Parking policies are designed to achieve a certain objective for the decision makers. Private

parking operators (e.g., garage owner) seek to maximize their revenue, whereas public agen-

cies (e.g., on-street parking managers) maximize the social welfare of the community which

accounts for the benefits gained by drivers and the revenue generated from parking. We con-

sider both objectives in the optimal design of parking policies.
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We seek to design the progressive pricing policy to maximize the revenue by choosing the

optimal prices, p1 and p2, and the threshold q. The total revenue, denoted by π, is the sum of

payments fromeach group, denoted by πi, such that π = πl+πh. The revenue fromeach group

is

πi =

Tip1d
∗
i ui(q) ≤ p2

Ti(p1q + p2(d
∗
i − q)) p2 < ui(q).

(5)

According to (5), one of three cases may occur as shown in Figure 1. In case 1 (Figure 10a),

both marginal utility functions only cross the horizontal p2 line. We refer to this as the case

where both groups “fall” on the second step of the price profile. Using the same terminology, in

case2 (Figure10b), onegroup fallson thefirst stepandtheothergroup fallson thesecondstep.

In case 3 (Figure 10c), both groups fall on the first step, thus making the progressive pricing

policy ineffective as both user groups only pay p1 and no driver’s dwell time is longer than the

threshold q. As such we do not consider case 3.

5.2 SOCIALWELFAREMAXIMIZATION

We now seek to design the progressive pricing policy to maximize social welfare. We first de-

fine the cruising cost of parking as the following. Let sdenote the supply of parking in the study

area, i.e., number of parking spaces. Parking occupancy under steady state conditions and ac-

cording to Little’s Law is o = Thd
∗
h + Tld

∗
l . Cruising time is conventionally defined w.r.t. the

ratio of parking occupancy to supply. Similar to Nourinejad and Roorda [2017], we define the

cruising time as o/s. Let γ be themarginal cost of cruising such that γo/s is the cost of cruising

per driver.

Socialwelfare is the sumof the revenuegenerated from theparking payments, and theutil-

ity of drivers (i.e., consumer surplus of the drivers), minus the negative externality of cruising.

We present social welfare, denoted byW , as

W = TlUl(d
∗
l ) + ThUh(d

∗
h) + π − γT (Thd

∗
h + Tld

∗
l )/s, (6)

where the first two terms are the total utility of the low and high value drivers, the third term

is the revenue, and the last term is the negative externality of cruising for parking.

5.3 COMPARISONOFPRICINGPOLICIES

Themarginalutility functioncanbeofany form, however, somecommonfunctions includes the

negative exponential, power, and linear function [Samuelson, 1937]. For exposition purposes

we consider a the linearmarginal utility function because is has properties that enable closed-

form derivations of the optimal policies, which is suitable for cross comparison of the policies.
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FIGURE 11: REVENUE POLICY PLOTS FOR VARYING VALUES OF α, ah AND bh WHILE ALL

OTHER PARAMETERS ARECONSTANT(al = 0.2, bl = 0.2, ah = 1, AND bh = 1).

Assume the utility functions of the groups are linear and defined as

ui(d) = ai − bid, (7)

where ai, bi > 0. Without loss of generality we let ul(d) ≤ uh(d) for all d. Note that themaxi-

mum dwell time according to (7) is ai/bi for group i drivers, which is the dwell time at which the

marginal utility function is zero. We use the equilibrium conditions of the previous section to

derive the dwell time of group i drivers as

d∗i =


(ai − p1)/bi ai − biq ≤ p1

q p1 < ai − biq ≤ p2

(ai − p2)/bi p2 < ai − biq.

(8)

For a given policy defined by p1, p2, and q, one of three cases may occur as explained previ-

ously anddepicted inFigure10. Given the linearmarginal utility function, in case1bothgroups

“fall” on the second step as long as q ≤ (al − p2)/bl. In case 2, the lower value group falls on the

first step, and the higher value group falls on the second step as long as (al − p1)/bl ≤ q ≤
(ah− p2)/bh. In case 3 both groups fall on the first step. Wedo not consider case 3 as explained

above.

Theprogressivepricingpolicy alwaysoutperforms thehourly pricingpolicywhenmaximiz-

ingeither socialwelfareor revenueasdiscussedearlier. Wedefine the revenue (or socialwelfare)

ratio as the ratio of progressive pricing revenue (social welfare) to the hourly pricing revenue

(social welfare). The revenue ratio is presented in Figure 11a for various marginal utility pa-

rameters. According to Figure 11when al is between the values of 0.3 and0.5, the twopolicies

are close in revenue,whilewhen the valueof al is closer to0or1 theprogressive policy outper-

forms the hourly policy. This can be explained by the relationship between the two price levels

and the progressive pricing structure. As the value of al increases, the optimal price level p∗1
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FIGURE 12: SOCIALWELFARE POLICY PLOTS VARIOUS s, α, ah AND bh. OTHER PARAME-

TERS ARE CONSTANT(Th = 0.2, al = 0.2, bl = 0.2, ah = 1, AND bh = 1).

increases while the optimal price level p∗2 decreases. In view of this there will exist a point a∗l
at which the two price levels,p∗1 and p

∗
2, are equal to each other. For values of al greater than a

∗
l

the price level p∗2 is lower than p
∗
1 and for values of al less than a

∗
l the price level p

∗
2 is higher than

p∗1. As expected, at boundary conditions Th = 0 and Th = 1 the revenue ratio between both

policies is equal to one since demand consists of only one group.

With regards to social welfare, the progressive pricing policy can outperform the hourly

pricing policy by up to 3%. As noted from Figure 12a, an increase in the supply of parking will

require an increase in the proportion of high-value drivers in order to maintain the same level

of performance. An increase in the ratio of al and ah will increase the performance of the pro-

gressive pricing policy with regards to social welfare. It is important to note that as the supply

of parking increases, the ratio between the socialwelfare generatedby the progressive pricing

policy and the hourly pricing policy will increase. From this observation we can suggest that

for areas with a high level of parking supply, the progressive parking policy is more fitting than

the hourly pricing policy. In Figure 12b we observe that as the value of al increases from 0 to

1 the social welfare ratio between the two policies also increases. Such result is expected be-

cause as the low-value drivers shift their marginal utility line upwards(al becomes closer to 1),

the socialwelfare fromparkingwill also increase. As seen inFigure12c, the socialwelfare ratio

increaseswhen the valueof bl is small. Since the valueof bl represents the slopeof themarginal

utility line, thena lowervalue for this slopewill shift themarketequilibriumpoint subsequently

increasing the parking duration of drivers. All other parameters remaining the same, a higher

parking duration will yield a higher social welfare.

6 VISSIMMICRO-SIMULATION

Thepotential impactsof thebefore-mentionedcurbsidepricingpoliciesarequantifiedwith the

use of amicro-simulation. The software package PTVVISSIM is used to develop amulti-modal

traffic flow simulation which will quantify network wide impacts of the policies. Performance

measurements extracted from the VISSIM simulation include total network travel time, aver-
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age speed, parking occupancy, and percent of vehicles who are not able to park and cruise for

parking. A description of network components, simulation calibration, and the two developed

scenarios are given in Sections 6.1, 6.2, and 6.3.

6.1 NETWORKDESCRIPTION

The road network was built in VISSIM using data gathered from google maps. Attributes in-

cluding the number of lanes, speed limit, and permitted turningmovementswere collected for

each road of the study area. Additionally, the number of parking lots available at each inter-

section and their approximate locationwere noted. Moreover, the TTC streetcar networkwas

modelled in VISSIM to get a closer representation of the current network conditions of the

study area as TTC streetcars can have a significant traffic flow in the area of consideration.

Figure 13 shows the developed network.

FIGURE 13: AERIAL VIEWOFROADNETWORKBUILT IN VISSIM.

Vehicles in the networkwere assigned travel routes based on the percent share of vehicles

which performed a movement. From data obtained regarding vehicular movements at inter-

sections described in Section 3.2, the percent share of vehicles which performed a left turn,

right turn and throughmovementwas calculated and used as input in the simulation. Similarly,

vehicular traffic inputswitha shareof96.68%passengervehiclesand3.32%truckvehicleswas

inputted as per calculation completed in Section 3.2.

Furthermore, signal timings were implemented into the network by creating a signal con-

troller for each intersection. A ringbarrier controllerwasusedas the signal type anddetectors

were used for each movement. Since signal timing data was not available and out of scope for

this project, a standard timing with cycle length of 78 seconds was used. Figure 14 shows the
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components includedateach intersectionof thenetwork. A totalof75signalized intersections

were implemented in the study area.

FIGURE 14: ONEOF 75 SIGNALIZED INTERSECTIONS BUILT IN VISSIM.

6.2 SIMULATIONCALIBRATION

Toensure that thedevelopednetwork represents currentnetworkconditions, theVISSIMsim-

ulationwas calibrated. Calibrationwas completedwith the use of available parking occupancy

data. As mentioned in Section 3.1, parking occupancy was given as a percentage. The three

ranges were 0% to 50%, 51% to 79%, and 80% to 100% for labels ”low”, ”medium” and ”high”

respectively. Parking rates were calibrated to ensure that parking occupancy from the simu-

lationmatched the occupancy provided in the data set. After calibration, 43 out of 54 parking

locations were calibrated to match their known parking occupancy, while the remaining 11

parking locations showed a parking occupancy within 20% of the known parking occupancy.

6.3 SCENARIODESCRIPTION

The first time-frame of importance to the study was the A.M. peak scenario. As described in

Section 3.2, the morning peak vehicular volume occurred from 8 A.M. to 9 A.M. For this time

frame, two scenarios were created within the simulation. The first scenario labeled as hourly

pricing implements an hourly pricing rate at each of the parking locations. Secondly, a progres-

sive hourly pricing scenario was also developed for the morning peak conditions. All parame-

ters in the simulation remained the same for both scenarios except.
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The off-peak time-frame is also of importance to the study. For this scenario, vehicular vol-

umes were reduced by 50% to compensate for the the reduced traffic flow during this time

frame. All other parameters remaining the same, three scenarios were created. Similarly to

the A.M.peak time frame, the first two scenarios consisted of hourly and progressive hourly

pricing policies. The third scenario for this time frame was that of an hourly pricing policy but

witha50%reduction inprice. That is tosay forparking locations thatwerecharged$5perhour

in the hourly policy, will nowhave a rate of $ 2.5 per hour in the second hourly pricing scenario.

This scenario is labelled as ”time-of-day pricing” for all subsequent sections of the report. The

assumption of reducing the price by 50% has beenmade in accordance to various time-of-day

pricing schemes implemented around the world. For example, in Sydney Australia the hourly

rate decreases from $7.2 to $3.9 during off-peak times. For each scenario, 30 simulation runs

were performed and averaged.

7 RESULTS

Withheuseofdatadescribed inSection3, two time intervalswere taken into consideration for

the VISSIM simulation. The first time interval spanned from 8 A.M. to 9 A.M. and represents

the peak morning traffic volume conditions. Results of this scenario are further described in

section7.1. Thesecondtime frameof interestwas theoff-peakscenario. Theoff-peakscenario

consisted of a 50% traffic volume reduction from the peak morning conditions and results of

this scenario are described in Section 7.2.

7.1 A.M. SCENARIO

As described in Section 3.2, the 1 hour time interval during the morning period which show-

cased thehighest traffic volumeswas from8A.M. to9A.M.The resultingdata fromtheVISSIM

simulationcanbeseenbelow. InFigure15the totalnetwork travel times foreachof the30sim-

ulation runs is displayed. Total network travel time is defined as the summation of travel time

experienced by all vehicles in the network. As noted from the figure, the general trend show-

cases a decrease in total travel when implementing a progressive hourly pricing policy. This

information is also presented as a box plot in Figure 16 were we can identified a mean travel

time of 2249.76 hours for the hourly pricing policy and 2224.09 hours when implementing a

progressive pricing policy.

The nextmeasurewhichwas taken into considerationwas average parking occupancy. Av-

erage parking occupancy is defined as the percentage of spots that are occupied during a spec-

ified time interval. Parking occupancy for the 54 parking locations can be seen in Figure 17. It

canbenoted that the general trend showedadecrease in parkingoccupancywhen implement-

ing a progressive hourly pricing policy. Additionally, all parking locations that experienced a

parking occupancy greater than 65% with an hourly pricing policy showed a decrease in oc-
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FIGURE 15: TOTAL NETWORK TRAVEL TIMES FOR 30 SIMULATION RUNS FOR THE

HOURLYANDPROGRESSIVE PRICING POLICIES.

FIGURE 16: BOXPLOTS FOR THEHOURLYANDPROGRESSIVE PRICING POLICIES.

cupancy when the progressive hourly pricing policy is implemented. Therefore, the resulting

data from the 30 simulations led to the proposition that progressive hourly pricing reduces

the average occupancy for parking locations that experience a high occupancy (greater than

60%) under an hourly pricing policy. For parking locationswith parking occupancy of less than

60%under the hourly pricing policy the implementation of a progressive hourly pricing did not

negatively impact average occupancy. In Figure 18 the parking locations with the highest and
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lowest occupancy aremapped. Additionally, the figure also contains parking locations that ex-

perienced a large decrease in parking occupancy with the implementation of the progressive

pricing policy. From this it can be noted that the implementation of a progressive pricing pol-

icy tends todecreaseparkingoccupancynotonly for theparking locationswithhighoccupancy

but also parking locations in the surrounding area.

FIGURE 17: PARKINGOCCUPANCY FOR 54 PARKING LOCATIONS IN THE STUDYAREA.

FIGURE 18: LOCATIONS WITH HIGHEST DECREASE IN OCCUPANCYWITH IMPLEMEN-

TATIONOF PROGRESSIVE PRICING POLICY.
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It is of importance to take into consideration the number of vehicles that are unable to find

parkingsince thesevehicleswill remain in thenetwork, cruise forparking, and increaseconges-

tion the area. Themeasure which was used in order to get an understanding of the number of

vehicles that are rejected from parking due to no parking spaces available is parking requests

declined. As seen in Figure 19, the parking requests declined is shown as a percentage of all

requests received. When comparing the hourly pricing policy with progressive hourly pricing

it can be noted that the number of parking requests declined decreases for the later one. Since

the progressive hourly pricing policy decreases the average dwell time of the driver which in

turn decreases occupancy, the number of vehicles that are able to park in the same period of

time increases leading to a fewer number of vehicles that are unable to park. The implementa-

tion of the progressive pricing was on average able to decrease the percent parking requests

declined by 11%.

FIGURE 19: PERCENT OF PARKING REQUESTS WHICH WERE DECLINED FOR THE 54

PARKING LOCATIONS.

Furthermore, there exists a relationship between the two above-mentionedmeasures, oc-

cupancy and parking requests declined. The relationship between bothmeasures is displayed

in Figure 20. The general trend from the scatter plot shows that as the average occupancy

increases, the percent of parking requests declined will also increase. However, the rate at

which parking requests declined increases is lower for the progressive hourly pricing policy

when compared to its counterpart. This leads us to propose that for a parking location that ex-

periences a given occupancy (let us say 80%), the number of vehicles that are not able to find

parking is larger under an hourly pricing policy as opposed to a progressive hourly policy.

Moreover, the average speedof vehicles in thenetwork increasedwith the implementation
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FIGURE 20: PERCENT SHARE OF PARKING REQUESTS DECLINED FOR VARYING PARK-

INGOCCUPANCY.

of the progressive hourly pricing policy as seen in Figure 21. An increase in average speed is

the resultant from the lower number of vehicles in the road at a given time. A decrease in the

number of vehicles that do not find parking and must cruise for parking leads to a decrease in

congestion in the surrounding area. This decrease in congestion permits the network to oper-

ate under conditions which are closer to the free flow speed of the network.

Lastly, the summary of resulting measures from the simulation can be seen in Table 1. In

addition to the previously discussed measures, GHG emissions and parking revenue values

are included in the table. With regards to parking revenue, it can be noted that the progres-

sive pricing policy significantly increases revenue as the implemented optimal price levels are

higher than the current pricing rate. GHG emissions were calculated from the simulationwith

he addition of one assumption. Vehicles in the network were assumed to have a fuel economy

of 8.9 L/100km. With this assumption, theCO2e (carbon dioxide equivalent) values for hourly

pricing and progressive pricing policies were found to be 6,569 kgCO2 and 6,494 kgCO2.
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FIGURE 21: AVERAGE SPEED HEAT MAPS FOR THE CASE STUDY. HOURLY PRICING ON

THE LEFT ANDPROGRESSIVEHOURLY PRICINGONTHERIGHT.

TABLE 1: SUMMARY OF RESULTS FOR EACH PRICING POLICY FOR THE A.M. PEAK SCE-

NARIO.

Measure Scale Units Hourly Pricing Progressive Pricing

ParkingOccupancy

(High Demand Locations,

occupancy >50%)

Street Block

Percentage

(Weighted based on

number of parking spots)

76.64% 71.00%

ParkingOccupancy

(LowDemand Locations,

occupancy <50%)

Street Block

Percentage

(Weighted based on

number of parking spots)

24.48% 23.99%

Parking Revenue Street Block $/hour $2,522.58 $5,790.19

Cruising for parking Street Block

Percent of vehicles declined.

(Weighted based on

number of parking spots)

32.29% 19.81%

Total Network Travel Time Study Area-Wide Hours 2249.76 2224.09

GHGEmissions Study Area-Wide
CO2e

Kg/hour
6,569 6,494
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7.2 OFF-PEAK SCENARIO

The simulation of off-peak conditions in the study consisted of 3 scenarios. The first scenario

was the current hourly pricing policy for the study area labelled as ”Hourly Pricing” in Figures

22 to 26. Secondly, scenario labelled as ”time-of-day pricing” consists of a reduction of 50%

to the current hourly rates. Lastly, scenario belled ”Progressive Hourly Pricing” consists of

the optimal progressive pricing levels calculated from the econometric model. The progres-

sive hourly pricing policy performedmarginally better when compared to the two hourly pric-

ing policies for the 30 simulation runs as seen in Figure 22. The average total network travel

times for hourly pricing, time-of-day pricing, and progressive hourly pricing are 1074.55hrs.,

1088.89hrs., and 1060.04hrs. respectively as seen in Figure 23.

FIGURE 22: TOTAL NETWORK TRAVEL TIMES FOR 30 SIMULATION RUNS FOR THE

HOURLYANDPROGRESSIVE PRICING POLICIES.

With regards to parking occupancy, as expected the off-peak conditions resulted in a de-

crease of parking occupancywhen compared to the A.M. conditions due to the decrease in ve-

hicular volumes in the network. The three policies under question hourly pricing, time-of-day

pricing, and progressive hourly pricing resulted in similar parking occupancy for most of the

parking locations. For twoparking locations, parking lot number 2 and7 in Figure 24, the park-

ing occupancy significantly increasedwith the implementation of time-of-day pricing and pro-

gressive hourly pricing. This results are anomaly in the data as the general trend for all other

54 parking locations does not show the same trend. The results from this two locations can

be labelled as outliers, possible reasons for this inconsistency could be in proper calibration of

parking rate for these specific locations. Additionally, the two parking locations only contain

11 and 3 parking spots each while the average number of parking spots is 17 for all parking
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FIGURE 23: BOXPLOTS FOR THEHOURLYANDPROGRESSIVE PRICING POLICIES.

locations in the study area. The small number of parking spots could drastically influence the

parking occupancy since for a parking locationwith 3 spots, the arrival off one additional vehi-

cle represents a 33% in parking occupancy. Nonetheless the general trend observed from the

three policies is that of the three pricing policies performing similarlywhenparking occupancy

is low while the progressive pricing policy achieved a slight reduction of parking occupancy

when occupancy was high.

FIGURE 24: PARKINGOCCUPANCY FOR 54 PARKING LOCATIONS IN THE STUDYAREA.

27



August 25, 2021

The percent of vehicles who are declined parking due to unavailability of spaces for each

of the three policies can be seen in Figure 25. The two hourly policies yielded similar results in

terms of the number of vehicles that are declined parkingwhile the progressive pricing consis-

tently decreased the number of declines for each parking spot. Fromall the before-mentioned

figures it can be seen that during off-peak conditions a parking price reduction (in this case

50%) does not have a significantly affect the parking occupancy, requests declined, and total

network travel time. With respect to the progressive hourly pricing, implementation of this

policy will only outperform the two hourly policies if the occupancy of the parking location is

high. As seen inFigure26, as theaverageparkingoccupancy increases, thepercentageof park-

ing requestswill also exponentially increase. This exponential relationship outlines the impor-

tance of maintaining a parking occupancy lower than 100%. Additionally, it can be noted from

Figure 26 that the exponential rate at which the percentage of parking requests increases is

lower for the progressive hourly pricing when compared to the two hourly pricing policies.

FIGURE 25: PERCENT OF PARKING REQUESTS WHICH WERE DECLINED FOR THE 54

PARKING LOCATIONS.

Furthermore, Table 2 contains the summary of all measures taken into consideration.With

regards to parking revenue, the progressive pricing policy once again generatesmore revenue

as expected. In addition, the time-of-day pricing policy which lowers the hourly rate by 50%

generates the lowest revenue of all policies. GHG emissions, which were calculated from the

simulationwithheadditionof thepreviouslydiscussedassumption (fuel economyofvehicles is

8.9 L/100km) shows a similar patter as travel time. That is to say the progressive pricing policy

achieves the lowest GHG emissions followed by the hourly policy and lastly the time-of-day

policy. That being said, the difference between these policies is not of significant magnitude.
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FIGURE 26: PERCENT SHARE OF PARKING REQUESTS DECLINED FOR VARYING PARK-

INGOCCUPANCY.

FIGURE 27: AVERAGE SPEED HEAT MAPS FOR THE CASE STUDY. HOURLY PRICING ON

THE LEFT, TIME-OF-DAY PRICING ON THE MIDDLE, AND PROGRESSIVE HOURLY PRIC-

INGONTHE RIGHT.
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TABLE 2: SUMMARY OF RESULTS FOR EACH PRICING POLICY FOR THE OFF-PEAK SCE-

NARIO.

Measure Scale Units Hourly Pricing Time-of-day Pricing Progressive Pricing

ParkingOccupancy

(High Demand Locations,

occupancy >50%)

Street Block

Percentage

(Weighted based on

number of parking spots)

67.07% 67.31% 61.59%

ParkingOccupancy

(LowDemand Locations,

occupancy <50%)

Street Block

Percentage

(Weighted based on

number of parking spots)

28.47% 30.53% 27.70%

Parking Revenue Street Block $/hour $1,880.55 $873.47 $4,617.18

Cruising for parking Street Block

Percent of vehicles declined.

(Weighted based on

number of parking spots)

11.11% 11.49% 6.13%

Total Network Travel Time Study Area-Wide Hours 1074.55 1088.89 1060.04

GHGEmissions Study Area-Wide
CO2e

Kg/hour
3,572 3,620 3,524
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8 CONCLUSIONS

To conclude, as shown in the results for both the A.M. peak conditions and off-peak conditions

the progressive hourly pricing policy can reduce the number of parking requestswhich are de-

clined. During peak conditions the percent share of vehicles declined parking decreased by

13.62% while in off-peak conditions it was reduced by 6.68%. Additionally, the progressive

hourly pricing is able to achieve a reduction of total network travel time of 1.14% during the

peak time frame and 1.35% during the off-peak. From the analysis completed on the data ex-

tracted from the simulation, the main findings indicate that implementing a progressive pric-

ing policy can positively impact the parking occupancy for locations with high occupancy not

only for peak conditions but also off-peak. For parking locations that experience a parking oc-

cupancy greater than 60% with an hourly pricing policy, the implementation of a progressive

hourly policy is able to reduce the parking occupancy by 5.53%. Reduction in parking occu-

pancy for high-occupancy locations is also shown to be highly correlated with the number of

vehicles declined parking due to space unavailability. For time-of-day pricing, a reduction of

50% in the price level of the hourly policy during off-peak hours does not negatively influence

parking occupancy. Supporting the claims that during low-demand hours, the implementation

of a lowerprice level for low-occupancy locationsdoesnotnegatively affect the transportation

network. It is of recommendation that to reduce total network travel times and increasemean

speeds of the network links, a progressive pricing policy with the optimal price levels is to be

implemented for high occupancy parking locations.
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9 APPENDIX

9.1 PROFIT UNDER LINEARMARGINALUTILITIES

We separately consider the above two cases when maximizing parking revenue. The optimal

policy under case 1 is obtained from the followingmathematical model denoted by [M1]:

[M1] : max
q,p1,p2

π = Tl(qp1 + (d∗l − q)p2) + Th(qp1 + (d∗h − q)p2)

s.t. 0 ≤ q ≤ (al − p2)/bl,

where d∗i is obtained from (8). In the objective function of [M1] the two terms are the revenue

of the low and high value groups, respectively. The constraint ensures case 1 happens. We

show in the appendix that the optimal solution of [P1] is q∗ = 0 and p∗2 = (ahbl(Th − 1) −
Thalbh)/(2bl(Th − 1) − 2Thbh). Because q∗ = 0, we have a single step hourly pricing structure,

where p2 is the price per hour and p1 can have any value. In other words, the first step of the

price profile does not exist, and we have an hourly pricing policy instead.

The optimal design under case 2 is obtained by the followingmathematical model denoted

by [M2]:

[M2] : max
q,p1,p2

π = Tlp1d
∗
l + Th(qp1 + (d∗h − q)p2)

s.t. (al − p1)/bl ≤ q ≤ (ah − p2)/bh,

where the two terms are the revenue of the low and high value groups, respectively. The con-

straint ensures case 2 happens. The optimal solution of [M2] is p∗1 = al/(1 + Th), p∗2 = 1/2(ah −
(Thalbh)/(bl(1 + Th)), and q∗ = (Thal)/(bl(1 + Th). We compare the revenue of the two cases in

the following proposition.

Proposition 1. The optimal revenue of the progressive pricing policy is achieved when the

low value group “falls” on the first step and the high value group “falls” on the second step.

According to Proposition 1, case 2 always outperforms case 1 in revenuemaximization.

9.2 SOCIALWELFAREUNDER LINEARMARGINALUTILITIES

Weseparately consider the two caseswhenmaximizing social welfare. The optimal design un-

der case 1 is obtained by the followingmathematical model:

[W1] : max
q,p1,p2

W = TlUl(d
∗
l ) + ThUh(d

∗
h) + π − γT (Thd

∗
h + Tld

∗
l )/s

s.t. 0 ≤ q ≤ (al − p2)/bl,

where thefirst twotermsof theobjective function indicate theconsumersurplusof thegroups,

the third term is the profit, and the last term is the negative externality of cruising. The con-

straint ensures case 1 happens.
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The optimal solution of [W1] is

p∗2 = (2((Th − 1)bl − Thbhs)(ah(Th − 1)bl − Thalbhs))/(2T
2
hb

2
hs

2

+Thblbhs(4− 4Th + bhs) + b2l (Th − 1)(−2 + 2Th − bhs
2)).

Since social welfare under case 1 is only a function of p2, the optimal solution is unaffected

by parameters p1 and q.

The social welfaremaximizing policy under case 2 is obtained by the followingmathemati-

cal model:

[W2] : max
q,p1,p2

W = TlUl(d
∗
l ) + ThUh(d

∗
h) + π − γT (Thd

∗
h + Tld

∗
l )/s

s.t. (al − p1)/bl ≤ q ≤ (ah − p2)/bh.

Weshow in that theoptimal solutionof [W2] isp∗1 = (2s(ah(bl−Thbl)+alThbhs))/(−2bl(−1+

Th)+ bhs
2(2Th+ bl)) and p∗2 = (2ahbl(−1+Th)− 2alThbhs/(2bl(−1+Th)− bhs

2(2Th+ bl)). Since

social welfare under case 2 is only a function of p2 and p1 , the optimal solution is unaffected by

parameter q. We compare the social welfare of the two cases in the following proposition.

Proposition2. Theoptimal socialwelfareof theprogressivepricingpolicy is achievedwhen

the high value group “falls” on the first step and the low value group “falls” on the second step.

According to Proposition 2, case 2 always outperforms case 1 in social welfare maximiza-

tion.

9.3 OPTIMAL PRICE LEVELS
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TABLE3:OPTIMALPRICELEVELSFORTHE54PARKINGLOCATIONSINTHESTUDYAREA.

Location ID Street Side of Street From To Price #1 Price #2

3008 Elizabeth St. East andWest Dundas St. W. Hagerman St. $5.00 $6.82

3009 Chestnut St. East andWest Dundas St. W. Armoury St. $5.00 $9.05

3010 Centre Ave. East andWest Dundas St. W. Armoury St. $5.00 $13.55

3012 Armoury St. North Centre St. University Ave. $5.00 $6.02

3102 Simcoe St. West Queen St. W. Richmond St. W. $5.00 $10.39

3104 Richmond St. W. South Simcoe St. John St. $5.00 $16.57

3106 Adelaide St. W. North Simcoe St. Spadina Ave. $5.00 $17.29

3108 Spadina Ave. East Adelaide St. W. King St. W. $4.00 $7.63

3111 Simcoe St. West Adelaide St. W. King St. W. $4.00 $5.23

3112 Pearl St. South Duncan St. Simcoe St. $5.00 $8.00

3116 Front St. W. South Spadina Ave. Blue JaysWay $5.00 $14.41

3117 Front St. W. North and South Simcoe St. University Ave./York St. $5.00 $4.96

3118 York St. West King St. W. Richmond St. W. $5.00 $12.35

3120 Clarence Sq. North Spadina Avenue Wellington St. W. $5.00 $8.53

3215 Queen St. W. North Soho St. Spadina Ave. $4.00 $13.87

4101 Queen St. E. South Church St. Jarvis St. $4.00 $9.18

4102 Richmond St. E. South Victoria St. Church St. $5.00 $9.17

4103 Richmond St. E. South Church St. Jarvis St. $4.00 $7.90

4105 Victoria St. East Richmond St. E. Adelaide St. E. $4.00 $4.80

4106 Lombard St. North and South Victoria St. Church St. $5.00 $16.27

4107 Lombard St. North and South Church St. Jarvis St. $4.00 $17.06

4108 Adelaide St. E. North Victoria St. Church St. $5.00 $13.05

4109 Adelaide St. E. North Church St. Jarvis St. $4.00 $8.54

4111 Toronto St. East andWest Adelaide St. E. King St. W. $5.00 $14.27

4112 Church St. East andWest Adelaide St. E. King St. W. $5.00 $14.30

4115 Colborne St. North Yonge St. Victoria St. $5.00 $5.70

4118 Church St. West Colborne St. Wellington St. E. $4.00 $8.87

4119 Church St. East King St. W. Wellington St. E. $4.00 $11.57

4120 Wellington St. E. South Yonge St. Scott St. $5.00 $9.90

4121 Wellington St. E. South Scott St. Church St. $4.00 $8.65

4122 Front St. E. North Church St. Jarvis St. $4.00 $11.48

4123 Front St. E. South Church St. Market St. $4.00 $9.53

4124 Front St. W. North and South Bay St. Yonge St. $5.00 $10.76

4125 Front St. E. North Yonge St. Scott St. $5.00 $12.68

4126 Front St. E. North Scott St. Church St. $4.00 $9.53

4128 Scott St. East andWest Front St. E. The Esplanade $4.00 $13.18

4129 Church St. East andWest Front St. E. The Esplanade $4.00 $10.25

4130 Market St. East andWest Front St. E. The Esplanade $4.00 $7.92

4131 The Esplanade North and South Scott St./ Church St. Church St./ Market St. $4.00 $6.82

4134 Jarvis St. East The Esplanade South Limit Parking $4.00 $6.89

4143 Victoria St. West Adelaide St. E. Old Post Office Ln. $5.00 $7.99

4144 Victoria St. West King St. E. Colborne St. $5.00 $7.66

4302 Queen St. W. North and South Bathurst St. Spadina Ave. $4.00 $11.00

4307 Richmond St. W. South Bathurst St. Portland St. $4.00 $6.29

4315 Bathurst St. East andWest King St. W./Stewart St. Wellington St. W. $3.00 $8.18

4316 Stewart St. North Bathurst St. Portland St. $3.00 $9.62

4317 Portland St. East King St. W. Wellington St. W. $3.00 $7.27

4318 Wellington St. W. North and South Bathurst St. / Portland St. Spadina Ave. $3.00 $6.82

4319 Niagara St. South Bathurst St. Portland St. $3.00 $7.27

4320 Portland St. East Wellington St. W. Front St. W. $3.00 $9.79

4321 Front St. W. North Bathurst St. Spadina Ave. $3.00 $7.69

4322 Spadina Ave. West King St. W. Front St. W. $3.00 $3.39

4358 Augusta Ave. West Richmond St. W. Queen St. W. $3.00 $6.82

4359 Portland St. East Adelaide St. W. Richmond St. W. $3.00 $5.97
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